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Quantum mechanics allows for correlations that are stronger than anything that can be achieved
in the classical world. There are, however, theories compatible with relativity which allow for even
stronger correlations, while sharing many characteristics with quantum mechanics. The principle of
information causality offers a possible explanation for why the world is quantum—and not described
by one of these other models. Generalizing the no-signaling condition it suggests that the amount
of accessible information must not be larger than the amount of transmitted information. Here
we study this principle experimentally in the classical, quantum and post-quantum regimes. We
simulate correlations that are stronger than allowed by quantum mechanics by exploiting the effect
of polarization-dependent loss in a photonic Bell-test experiment.

I. INTRODUCTION

Quantum mechanics is one in a large class of theories
which are consistent with relativity in the sense that they
do not allow signals to be sent faster than the speed of
light. Many of these theories exhibit strong non-local
correlations between distant particles that cannot be ex-
plained by the properties of the individual particles alone.
Surprisingly, quantum mechanics is not the most non-
local among them, which raises the question about the
physical principle that singles-out quantum mechanics
and sets the limit on the possible strength of correlations
in nature.

Here we experimentally address this fundamental ques-
tion by testing the principle of information causality in
the classical, quantum and post-quantum regime. While
the no-signaling principle limits the speed with which
distant parties can communicate, information causality
states that the accessible information cannot be more
than the information content of a communicated mes-
sage, no matter what other shared resources are used.
Both classical and quantum mechanics satisfy this prin-
ciple, while it is violated by most post-quantum theo-
ries [1].

We experimentally emulate correlations of various
strengths from classical to almost maximally non-local
and demonstrate a violation of the principle of infor-
mation causality in the case where the simulated cor-
relations are beyond the quantum regime. Apparent
super-quantum correlations are, in our approach, a con-
sequence of the non-unitary evolution of quantum states
when subjected to polarization-dependent loss with post-
selection [2]. For moderate loss, we find that initially en-
tangled states can result in super-quantum correlations,
while unentangled states still appear classical. For higher
loss on the other hand we observe super-quantum corre-
lations even for classical input states.

II. THEORETICAL FRAMEWORK

No-signaling resources can formally be treated as pairs
of black boxes shared between arbitrarily separated Alice
and Bob [3], see Fig. 1a). Each box has a single input
and output and the correlation between them is only re-
stricted by the no-signaling principle. This means that
the local outcome only depends on the local input, such
that Alice cannot learn anything about Bob’s input from
only her output.

A typical quantum example of such a resource is a
pair of entangled particles, shared between Alice and
Bob, where inputs correspond to measurement settings
and outputs to measurement outcomes. Since the
work of John Bell—and numerous subsequent confirm-
ing experiments—it is now widely accepted that these
particles exhibit non-local correlations, which have no
classical explanation. Under the no-signaling constraint
alone, however, there are even stronger non-local corre-
lations than quantum entanglement [4]. The maximum
that is compatible with relativity is achieved by the so-
called Popescu-Rohrlich (PR)-box [4], characterized by
perfect correlations of the form A ⊕ B = ab, between
Alice’s and Bob’s inputs a and b and outputs A and B,
respectively, see Fig. 1a). Here ⊕ denotes addition mod-
ulo 2, equivalent to the logical XOR, where A ⊕ B = 0
when A = B and 1 otherwise.

A convenient operational way of quantifying non-
locality is the Clauser-Horne-Shimony-Holt (CHSH) in-
equality [5]. This experimentally testable reformulation
of Bell’s inequality is satisfied by any correlation that
can be described by a local hidden variable model. Such
models are a description of correlations that can arise
in classical systems, but cannot describe non-local cor-
relations obtained from e.g. entangled quantum states.
Written in terms of correlations of the form A⊕B = ab
the inequality takes the form

S =

1∑

a=0

1∑

b=0

P (A⊕B = ab | a, b) ≤ 3. (1)
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Here P (A ⊕ B = ab | a, b) denotes the probability for
obtaining outputs A,B, which satisfy A ⊕ B = ab given
the inputs a for Alice and b for Bob. While this in-
equality is satisfied by any classical correlations, it can
be violated in the quantum case. This violation, how-
ever, is bounded to a value of 2 +

√
2 ≈ 3.41, known as

Tsirelson’s bound [6] [7].
Despite being a simple consequence of the mathemat-

ical formalism of quantum mechanics, it is unclear what
the physical motivation is for this seemingly sub-optimal
limit on the strength of quantum correlations. In fact
even the algebraic maximum S = 4 can be achieved (by
the PR-box) without violating the no-signaling principle.

III. THE PRINCIPLE OF INFORMATION
CAUSALITY

The no-signaling principle is physically motivated by
the fact that, according to special relativity, faster-than-
light information transfer would allow information to be
sent backwards in time and thus violate causality. Nev-
ertheless, it does not explain why super-quantum corre-
lations such as the PR-box are incompatible with quan-
tum mechanics and seem not to exist in nature. A possi-
ble explanation is offered by the principle of information
causality—a generalization of no-signaling—which states
that there cannot be more information available than was
transmitted [8].

This can be understood on the basis of the following
elementary information-theoretic protocol: Bob tries to
gain information from a set of data that is only known
to Alice. The parties are allowed to use an arbitrary
amount of shared no-signaling resources, but may not
communicate more than m classical bits. In this case, the
information causality principle states that the amount of
information accessible by Bob should be limited to m
classical bits [8].

In the simplest instance, Alice has a set of two bits
{a0, a1} and Bob wants to guess one of them, which we
denote ab [9]. Alice and Bob then input a0⊕a1 and b into
their respective black box and obtain outputs A and B.
From this output Alice computes an m = 1-bit message
M = A⊕a0 and sends it to Bob, who calculates his guess
for Alice’s bit as G = M ⊕B = a0 ⊕A⊕B. In the case
of a shared PR-box, Bob can guess either one of Alice’s
bits perfectly, since in that case A ⊕ B = ab and thus
G = a0 ⊕ b(a0 ⊕ a1).

In the more general case considered here, Alice has a
dataset {a0, . . . , aN−1} of N = 2n bits and Bob wants to

guess the bit with index b =
∑n−1
k=0 bk2k. As discussed in

Ref. [8], Alice and Bob can achieve this task by using a
nested version of the protocol outlined above, with N−1
black boxes on n levels and 1 bit of classical communica-
tion.

The protocol is illustrated in Fig. 1b) for the case
n = 3. From every output Alice computes a temporary
message Mk,i, where k denotes the level and i the num-

a)

b)

In case of PR:

Alice Bob

Alice’s message Bob’s guess

FIG. 1. Illustration of the information causality pro-
tocol. a) A general no-signaling resource is given by a space-
like separated (indicated by the dashed line) pair of black
boxes producing local outputs A and B for Alice and Bob,
when they input a and b, respectively. In the case of a PR-
box the outputs would be perfectly correlated according to
A⊕B = ab. b) Example of the Information causality proto-
col for n = 3. Alice has a list of N bits ai and Bob tries to
guess the bit a5 using N−1=7 sets of shared black boxes on
n=3 levels (corresponding boxes are marked with white cor-
ners). Bob’s inputs and choice of boxes are determined by the
binary decomposition of the index of interest. From his out-
puts B1, B2, B3 and Alice’s 1-bit message M Bob computes a
final guess G for Alice’s bit ab. Note that Bob only needs to
use one box on each level and ignores the outputs of all the
other boxes. Hence, his input to these boxes can be arbitrary
and in the experiment we chose to use the same input for all
boxes on one level.

ber of the box on that level. Since she is only allowed
1 bit of communication, she uses these temporary mes-
sages as the inputs for the boxes on the next-lower level
and only sends the final message to Bob. Depending on
bn Bob then decodes either Mn−1,1 or Mn−1,2 and then
moves on to the next-higher level until he reaches the bit
of interest.

Bob’s success can then be quantified by

I =

N−1∑

k=0

I(ak : G | b = k), (2)

where I(ak : β | b = k) is the Shannon mutual informa-
tion between the k’th bit of Alice’s list and Bob’s guess
for it [8]. This quantity can further be bounded as

I ≥
N−1∑

k=0

1− h(Pk), (3)

where h(Pk) is the binary entropy of the success proba-
bility Pk for guessing the k’th bit.
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IV. EXPERIMENTAL IMPLEMENTATION

Experimentally, we generate apparent super-quantum
correlations based on the effect of polarization-dependent
loss in a post-selected Bell-test experiment [2]. We use
photon pairs created from a continuous-wave pumped
spontaneous parametric down-conversion source in a po-
larization Sagnac design [10, 11], as illustrated in Fig. 2a).
Using this approach we obtain photon pairs with very
high efficiency and in a continuously tunable fashion that
enables us to produce any bipartite quantum state [12].

In particular, we used the maximally entangled state
|ψ+〉= (|H〉|V 〉+ |V 〉|H〉) /

√
2 as the initial state, where

|H/V 〉 represent horizontal and vertical polarization,
respectively. For comparison, we also considered the
corresponding fully decohered and thus separable state
ρsep= (|HV 〉〈HV |+ |V H〉〈V H|) /2. This state was pro-
duced as a mixture of the two pure state components
|HV 〉 and |V H〉 by probabilistically mixing the respec-
tive coincidence counts.

Key:
BD QWP HWPPBS FC APD

H

V

H

V

L

Pol

HWP 1

HWP 2

HWP 3

Bob

Alice

ppKTP

b) c)

Alice Source
a)

Bob

FIG. 2. The experimental approach. a) Pairs of sin-
gle photons are created at the source and are subjected to
polarization-dependent loss before Alice and Bob perform
their measurements. b) The photon-source used in the ex-
periment is spontaneous parametric down-conversion in a
10 mm long periodically poled KTiOPO4 (ppKTP) crystal
inside a polarization Sagnac interferometer using a grating
stabilized continuous wave pump laser (L) at a wavelength
of λ = 410 nm. By controlling the phase and polarization
of this laser and adjusting the additional half-wave-plate in
Bob’s arm of the source, HWP3, any two-qubit states can
be produced. c) Polarization-dependent loss is introduced
to the system in a controllable way using an interferometer
based on calcite beam displacers (BD), which split the hori-
zontal and vertical polarization components into two spatial
modes. The two HWPs in the interferometer are set to ro-
tate the polarization by 90◦, which ensures equal path-length
of the two spatial modes upon recombination at the second
set of BD. The degree of loss for each polarization is then
proportional to the offset of the corresponding HWP from
this setting. Finally, a series of quarter-wave plates (QWP),
HWP and polarizing beam splitter (PBS) is used to perform
the Bell measurements. Note: additional polarizers may be
introduced before the interferometer to produce high quality
separable states.

The initial state is then subjected to polarization-
dependent loss, introduced to the system by means of a
Jamin-Lebedev polarization-interferometer, which allows
individual control of the degree of loss for each polariza-
tion mode for both Alice and Bob, see Fig. 2b). In the
symmetric case considered here the loss was parametrized
by a single parameter κ, where κ=0 corresponds to the
loss-free scenario and κ=1 means complete loss of one
polarization. With this setup we simulated correlations
of increasing strength, ranging from classical to quantum
and close to maximal non-signaling as discussed in detail
in the methods section.

Using these correlations we investigated the informa-
tion causality protocol on up to 4 levels (corresponding to
a 16-bit data-set for Alice) with 1-bit of communication.
Crucially, we implemented the protocol in Fig. 1b) on
a shot-by-shot basis, rather than estimating the perfor-
mance from coincidence probabilities. For this we used
an AIT-TTM8000 time-tagging module with a temporal
resolution of 82 ps to register the single photon counts
for all possible outcomes. From this data, using passive
feed-forward, i.e. at the processing stage, we were able to
reconstruct over 105 individual trials of the protocol for
each of the 21 settings of uniformly increasing κ.

V. RESULTS

At a correlation strength of S=3.874(5), the informa-
tion available to Bob is at least I≥1.86(2) bits, despite
only receiving 1 bit from Alice. For four nesting lev-
els of the protocol we establish lower bounds as high as
I≥7.47(11) bit, which violates the information causality
inequality I ≤ 1 by almost 60 standard deviations. Sim-
ilarly for weaker correlations, Bob has more information
available than contained in Alice’s message for all nest-
ing levels as soon as the correlation strength surpasses
S ≈ 3.5. The fact that this value is significantly higher
than Tsirelson’s bound of Sq ≈ 3.41 emphasizes that the
quantity I only recovers this bound in the asymptotic
limit n→∞.

In the following we therefore consider an alternative
figure of merit, motivated by identifying the protocol in
Fig. 1b) is a special case of a so-called random access
code [13]. Using similar ideas as in Ref. [8], the efficiency
of this task can be bounded by

η =

N−1∑

k=0

(2Pk − 1)2 ≤ 1, (4)

which thus also encompasses the principle of information
causality [13]. This bound, however, can indeed be sat-
urated by quantum states for any size of Alice’s dataset,
as illustrated in Fig. 3. Note that our data violates the
bound before the correlations surpass Tsirelson’s bound.
This is a result of a slight anisotropy in the simulated
correlations due to experimental imperfections and a re-
sulting bias for certain data-sets. It is not present when
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considering isotropic correlations, see Fig. 3b). Crucially,
this highlights the dependence of both figures of merit (3)
and (4) to the specific random choice of Alice’s data-set.
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FIG. 3. Experimental results for the efficiency in the
information causality protocol. a) Shown is the effi-
ciency of the protocol for increasing strength of correlation,
see methods section. The data points represent n = 1 (blue
circles), n = 2 (red squares), n = 3 (yellow diamonds) and
n = 4 (green triangles) levels in the protocol, where at each
level a random dataset {ai} was used. Error-bars represent
the standard deviation of 5 individual runs of every protocol.
The lines correspond to theoretical expectations for the given
correlation strength. b) A zoom into the region where our
data violates Tsirelson’s bound (indicated by the grey, verti-
cal line). Our data violates the bound of η≤1 already before
the correlation strength surpasses Tsirelson’s bound, which is
a result of a finite sample size and the particular choice of
random dataset, see Sec. SI. In the right panel, the same plot
for isotropic correlations obtained from using the protocol of
Ref. [14] shows very good agreement with the theoretical pre-
dictions.

In particular, the separable state used in the simula-
tion produces entanglement-like correlations for one mea-
surement choice of Alice and uncorrelated outputs for
the other, see Sec. SI. Hence, depending on the choice
of data-set the figures of merit η and I might resem-
ble the behaviour expected for an entangled state, for a
completely mixed state or, for higher nesting level, any-
thing in-between. Only when averaging over all possible
datasets, {ai}, for a given level or employing the “depo-
larization” protocol introduced in Ref. [14] to make the
correlations isotropic without changing the CHSH value,
can the quantities (3) and (4) be used as reliable figures
of merit, see Sec. SI and SII. Note, however, that the “de-
polarization” approach cannot be used when probing the
principle for anisotropic super-quantum correlations be-

low Tsirelson’s bound. The resulting correlations would
lie within the quantum set and thus not violate the prin-
ciple, even if the original anisotropic correlations would
have.

VI. DISCUSSION

In contrast to the full set of no-signaling correlations,
and the set of classical correlations, which both have the
form of a well-characterized polytope, much less is known
about the quantum set [3, 15]. Understanding the set
of quantum correlations theoretically and characterizing
it experimentally should thus be a primary aim from a
practical as well as a fundamental perspective. Infor-
mation causality, which has been proposed as a physical
principle to reconstruct the set of quantum correlations,
has already proven successful in recovering the famous
Tsirelson bound. This limit of quantum correlations,
however, is only one extremal point on the continuous
boundary and there exist correlations below it, which
nevertheless do not admit a quantum description [1]. In-
formation causality also rules out such correlations for
some 2-dimensional slices of the full (8-dimensional) no-
signaling polytope, while it does not for other slices [1].
This shortcoming, nevertheless is not definite and might
just be a result of a suboptimal protocol in Fig. 1b).

A violation of information causality would in particu-
lar imply that the tested theory does not admit a suit-
able measure of one of the most elementary information
theoretic quantities: entropy [13, 16]. Such a measure
is assumed to be consistent with the classical limit and
such that the entropy change ∆H of a composite system
XY satisfies ∆H(XY ) ≥ ∆H(X) + ∆H(Y ) under local
evolution of the subsystems X and Y . Hence, a failure of
these requirements could be interpreted as allowing for
the generation of non-local correlations via local transfor-
mations. Similar consequences might also arise from the
violation of alternatives to information causality, which
are more or less successful in recovering part of the quan-
tum boundary. Examples include the principles of local
orthogonality [17], the requirement that the theory has
a suitable classical limit [18] or that certain communica-
tion [19–21] or computational tasks [22] are non-trivial.

Our method of simulating super-quantum correlations
could be adapted to explore some of these alternative
principles as well. Of particular interest, however, would
be a test of information causality in the multipartite
case, since most of the above principles are formulated
in the bipartite setting, which is bound to fail in recov-
ering the full quantum boundary due to the existence of
multipartite super-quantum correlations, which obey ev-
ery bipartite principle [23, 24]. While there are studies
of information causality for higher-dimensional systems,
which strengthen its position as a physical principle that
determines quantum correlations [25], a suitable general-
ization to the multipartite case is still an open problem.

As highlighted by our experiment, special focus has to
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be put on anisotropic regions of the no-signaling poly-
tope. Specifically we find that the introduced figures of
merit are not valid in a single instance of the protocol and
have to averaged over all possible datasets or estimated
from the depolarized, isotropic data. This subtle, but
very important detail is clearly highlighted by our exper-
imental results, where we show how even a small amount
of imbalance can result in a violation of the principle by
quantum states for a specific choice of parameters, while
obeying the principle on average.

VII. METHODS

Examining the results of a CHSH-inequality test make
it clear where our data crosses the boundary of the quan-
tum set. In our investigation we focused on the scenario
of a fixed maximally entangled state |ψ+〉 in situations
with different amounts of loss, as shown in Fig. 4. We
further considered the state ρsep, which resembles the
state |ψ+〉 after full decoherence as might happen dur-
ing propagation between Alice and Bob. This allows for
an intuitive comparison between the entangled and un-
entangled case.

The tested inequality has the form of a CHSH-
inequality with measurements in the yz-plane of the
Bloch sphere. For the lossless case κ = 0, Alice’s and
Bob’s measurements can be viewed as the application
of appropriate basis-rotations (around the x-axis) fol-
lowed by projective measurements in the |H/V 〉-basis.
These rotations can also be seen as phase-gates in the
diagonal polarization basis |±〉 = 1√

2
(|H〉 ± |V 〉). In

the case where polarization dependent loss is present,
these phase-gates become non-unitary. They act as the
identity on the state |u〉=

(√
1 + κ |H〉+

√
1− κ |V 〉

)
/
√

2
and imposes a phase on the non-orthogonal state
|w〉=

(√
1 + κ |H〉−

√
1− κ |V 〉

)
/
√

2, where κ=〈u|w〉.
The precise relation between κ and the degree of loss
is discussed in Ref. [2]. As non-unitary operations can
only be performed non-deterministically, postselection on
success is required, which results in the observation of
apparent super-quantum correlations. Finally, we use
the first step of the protocol in Ref. [14] to symmetrize
the simulated correlations, while preserving their possible
anisotropy.

Curiously, we note that moderate polarization-
dependent loss can lead to super-quantum correlations
for entangled states without invalidating the CHSH in-
equality for separable states, as suggested in [2]. This
observation even holds when optimizing the separable
state for maximal CHSH-value, for each degree of loss [2].
Note, however, that these results were obtained using
the same measurements for both separable and entan-
gled states, whereas arbitrary hidden variable theories
would allow arbitrary measurements.

Figure 4 illustrates the obtained values of the CHSH
parameter S and compares them to the ideal case, which,
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FIG. 4. Experimental results. Shown are the experimen-
tally obtained values for the CHSH-parameter S for both the
entangled state |ψ+〉 (blue circles) and the separable state
ρsep (red squares), together with the theoretical predictions
(blue and red lines, respectively) for these states, versus the
amount of polarization-dependent loss as parametrized by κ.
The gray dashed line represents the theoretical expectation
for the optimal state for a given amount of loss. In the exper-
iment we observe a violation of Tsirelson’s bound for κ ≥ 0.3,
while the CHSH inequality is still satisfied for the separable
state. Interestingly, we identify a region (0.3≤κ≤0.372) where
the quantum bound of the inequality is violated, while the
classical bound still holds. With the chosen, fixed, separable
state ρsep we observe a first violation at κ = 0.5. Errors from
a Monte-Carlo sampling of the Poissonian counting statistics
are not visible on the scale of this plot.

for the initially entangled state, is described by

S|ψ+〉(κ) = 3
κ2 − cos Θ

2

2(1− κ2 cos Θ
2 )
− κ2 − cos 3Θ

2

2(1− κ2 cos 3Θ
2 )

+2. (5)

Here Θ is a function of κ, which can be analytically
approximated by Θ=π(17+ cos(πκ))/12, as discussed in
Ref. [2].

We experimentally violate Tsirelson’s bound by more
than 7 standard deviations, S=3.423(1) at a loss param-
eter of κ=0.3. At this point, the achieved value for the
unentangled state, S=2.821(2), is indeed well below the
classical bound of 3 and even the optimal unentangled
state does not violate the inequality until κ ≈ 0.37. In the
region 0.3 ≤ κ ≤ 0.37 it is therefore possible to exploit
super-quantum correlations from entangled states while
unentangled states still appear classical. With increas-
ing loss, both states eventually violate Tsirelson’s bound
and approach the numerical maximum of S = 4, with
experimental values of S = 3.9341(6) and S = 3.929(2)
for the entangled and separable state, respectively. The
increasing deviation from the theoretical predictions in
Fig. 4 is a result of the decreasing signal-to-noise ratio in
the single-photon detectors for high-loss settings.

Related experiments have observed apparent violations
of Tsirelson’s bound as a consequence of explicit viola-
tions of the detection loophole [26] or the fair-sampling
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assumption [27]. The latter is in fact typically violated
if the quantum system of interest has more (possibly)
correlated degrees of freedom than those tested in the
Bell-inequality [28]. Violation of Tsirelson’s bound has
also been considered as an intermediate step in deriving
three-qubit inequalities [29].
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Supplemental Material

Here we discuss in more detail the subtleties of the
information causality protocol for individual choices of
the data-set for Alice. In particular we will discuss the
effect of anisotropic correlations of decohered entangled
states and present results for the case where these are
transformed to isotropic correlations by incorporating the
protocol proposed in Ref. [14] into our experiment.

SI. SEPARABLE STATE CORRELATIONS AND
THE CHOICE OF DATA-SET

As discussed previously, the experiment was performed
for both entangled and separable initial states. While the
entangled state allows for generation of super-quantum
correlations in the range 3.379(1) ≤ S ≤ 3.9341(6), the
separable state covers a larger range of 2.698(2) ≤ S ≤
3.929(2). This range in particular includes a large part
of the set of classical (S ≤ 3) and quantum correlations
(S ≤ 3.41). Here it is important to reiterate the form
of the used state. Since it has been chosen as the fully
decohered version of |ψ+〉 it still retains correlations of
the same strength in one basis, while correlations in any
orthogonal basis are lost—a classically correlated state,
see Fig. S1.

00 01 10 11
00 0.25 0.25 0.25 0.25
01 0.25 0.25 0.25 0.25
10 0.43 0.07 0.07 0.43
11 0.07 0.43 0.43 0.07

00 01 10 11
00 0.43 0.07 0.07 0.43
01 0.43 0.07 0.07 0.43
10 0.43 0.07 0.07 0.43
11 0.07 0.43 0.43 0.07

Outputs: AB

In
pu

ts
: a

b

Outputs: AB

In
pu

ts
: a

b

b)a)

FIG. S1. Measurement probabilities for the lossless
case κ = 0. Shown are the theoretically expected measure-
ment probabilities for both the a) entangled and b) separable
state for a lossless Bell-test experiment. Note that the cor-
relations are the same for the two states when Alice choses
to measure 1, but there are no correlations for the separable
state when she measures 0.

An important consequence of this feature, as discussed
in the main text, is that the success probability in the in-
formation causality protocol then depends on the specific
choice of data-set for Alice. As an example consider the
simplest instance, where Alice has two bits a0 and a1. Al-
ice uses a0⊕a1 as her input and Bob uses b ∈ {0, 1}. The
probability of success in this scenario will be the same
as for the entangled state whenever a0 ⊕ a1 = 1 (that
is for the data-sets {0, 1} and {1, 0}) and the same as
for random guessing (1/2) in the other two cases, where
a0⊕ a1 = 0. Although Ref. [8] discussed the related case
where the probability of success may depend on Bob’s
choice, the feature revealed here has an important prac-
tical implications, since the calculation of the figures of
merit always requires to consider all of Bob’s possible

choices, while only one data-set for Alice has to be con-
sidered. Depending on the choice of data-set, any degree
of efficiency can be achieved with classical states.

There are several ways to circumvent these problems.
Clearly, averaging over all possible data-sets will recover
the performance expected from the CHSH-value corre-
sponding to the respective state. However, as the possible
choices for Alice’s data-set grow doubly-exponentially,
this approach is typically unfeasible, in particular when
testing the protocol on a shot-by-shot basis. Here we
employed the “depolarization” protocol introduced by
Ref. [14], which takes any set of correlations to an
isotropic one without changing the CHSH-value, using 3
bits of shared randomness. The drawback of this method,
however, is that it precludes a test of information causal-
ity in the anisotropic regime of super-quantum correla-
tions below Tsirelson’s bound, see Ref. [1].

SII. RESULTS FOR ISOTROPIC
CORRELATIONS

Figure S2 shows the experimental lower bounds on the
mutual information measure I for the isotropic correla-
tions obtained from the depolarization protocol applied
to the initially separable state. Figure S3 shows the ran-
dom access code efficiency η for the same data. In both
cases we observe excellent agreement with the theoretical
predictions.
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1− h(Pk)

FIG. S2. Experimental results for the mutual informa-
tion gain in the information causality protocol. Shown
is the lower bound on the mutual information gain in the
protocol for increasing strength of isotropic correlation. The
data points represent n = 1 (blue circles), n = 2 (red squares),
n = 3 (yellow diamonds) and n = 4 (green triangles) levels
in the protocol, where at each level a random dataset {ai}
was used. Error-bars represent the standard deviation of 5
individual runs of every protocol. The lines correspond to
theoretical expectations for the given correlation strength.
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FIG. S3. Experimental results for the efficiency in the
information causality protocol. Shown is the efficiency of
the protocol for increasing strength of isotropic correlation.
The data points represent n = 1 (blue circles), n = 2 (red
squares), n = 3 (yellow diamonds) and n = 4 (green triangles)
levels in the protocol, where at each level a random dataset
{ai} was used. Error-bars represent the standard deviation
of 5 individual runs of every protocol. The lines correspond
to theoretical expectations for the given correlation strength.
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