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Abstract: Pair creation by spontaneous parametric down-conversion
(SPDC) has become a reliable source for single-photon states, used in many
kinds of quantum information experiments and applications. In order to
be spectrally pure, the two photons within a generated pair should be as
frequency-uncorrelated as possible. For this purpose most experiments use
narrow bandpass filters, having to put up with a drastic decrease in count
rates. This article elaborates (theoretically and by numerical evaluation)
the alternative method to engineer a setup such that the SPDC-generated
quantum states are intrinsically pure. Using pulsed pump lasers and
periodically poled crystals this approach makes bandpass filtering obsolete
and allows for significantly higher output intensities and therefore count
rates in the detectors. After numerically scanning all common wavelength
regimes, polarisation configurations and three different non-linear crystals,
we present a broad variety of setups which allow for an implementation of
this method.
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1. Introduction

Spontaneous parametric down-conversion is a quantum-mechanical process where a photon
of high energy (usually referred to as pump) spontaneously decays into two daughter photons
(signal and idler) by interaction with a non-linear optical medium. In order for the three fields
not to interfere destructively within the crystal, they can be phase-matched via the quasi-phase-
matching technique, where the crystal is composed of thin layers with alternating non-linearity
coefficient. This approach allows for phase-matching at any collinear three-wave mixing pro-
cess. In general the frequency spectra of signal and idler are mutually correlated which neg-
atively affects quantum purity. As pointed out in this article, this results in poor Hong-Ou-
Mandel visibility [1] when two independent SPDC sources (or photons from different pairs of
the same source) are used. By insertion of narrow bandpass filters into signal and idler chan-
nel the spectral correlations can be removed under the cost of discarding a better part of the
down-converted photons and undermining heralding efficiency, as illustrated in Fig. 1(a). The
approach discussed in this article aims to design the SPDC setup such that the output radia-
tion is a priori uncorrelated, as depicted in Fig. 1(b), so no photons have to be discarded by
filtering. This can be achieved by mutual matching of pulsed pump lasers (centre wavelength
and spectral width) and periodically poled non-linear crystals (material, crystal type, poling
periodicity, temperature). While the postulates of quantum mechanics, combined with numeri-
cal mathematics, show how the purity of down-converted photons can be evaluated [2–5], first
experimental tests of this approach yielded promising results [5–12]. In our research we inves-
tigated phase-matching conditions and quantum state purity of all types of down-conversion in
all common wavelength regimes and in three kinds of periodically poled crystals: potassium
titanyl phosphate (KTiOPO4, ppKTP), lithium niobate (LiNbO3, ppLN) and lithium tantalate
(LiTaO3, ppLT).
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(a) (b)

Fig. 1. Sketch of the basic approach. Most experiments use narrow bandpass filters (a) to
remove correlations in the joint spectral intensity, therefore omitting a significant amount
of generated photons (grey area). Alternatively one can design the experimental setup such
that the daughter spectra are intrinsically uncorrelated (b), hence no filters have to be used
and no photons are discarded.

2. The SPDC amplitude

The quantum state that describes SPDC reads as

|Ψ〉= ˜N deffL
∫

∞

0

∫
∞

0
µ(ωs +ωi)ψ(ωs,ωi)a†

s a†
i dωs dωi |0〉 , (1)

where ˜N is a normalisation constant, deff is the effective non-linearity coefficient of the crystal,
L is the interaction length (i.e. the length of the non-linear crystal), a†

s/i are the creation operators
of a signal and idler photon respectively, µ is the pump envelope amplitude and ψ is the phase-
matching envelope amplitude:

ψ(ωs,ωi) = ei∆kL/2 sinc
(

∆kL
2

)
(2)

with ∆k representing the phase-mismatch:

∆k = 2π

(
np

λp
k̂p−

ns

λs
k̂s−

ni

λi
k̂i

)
, (3)

where λp/s/i and np/s/i are the wavelengths and refractive indices respectively. In the case of
collinear quasi-phase-matching the mismatch reads

∆k = 2π

(
np

λp
− ns

λs
− ni

λi
− m

Λ

)
, (4)

where m is an integer and Λ is the poling periodicity of the crystal. In order to achieve quasi-
phase-matching, i.e. to reset the phase mismatch within the crystal periodically, the sign of
the effective non-linearity deff is alternated in multiples of the length Λ. The refractive indices
are subject to the wavelength- and temperature-dependent Sellmeier equations for respective
crystal and polarisation direction. Therefore the phase-matching amplitude ψ is unique for
each setup of down-conversion type, wavelengths, crystal and temperature.
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3. Factorability

The Hong-Ou-Mandel visibility of two interfering substates ρA and ρB with respective purities
PA and PB reads as [2]

V =
PA +PB−‖ρA−ρB‖2

2
. (5)

This equation illustrates nicely the role of state purity P and indistinguishability ‖ρA−ρB‖ re-
quired for high visibilities. In our case A and B represent photons from two independent SPDC
sources. (Note that Hong-Ou-Mandel interference of signal and idler from the same generated
pair does not require high purity and is therefore not embraced in this paper.) Consider the spe-
cial case of an interference experiment with two independent identical sources (or subsequent
photons from the same source which is equivalent). If we let the two signal photons interfere
and use the idler photons for heralding, the purities and the state operators of the interfering
photons coincide (PA = PB =: P, ρA = ρB) and the visibility depends on the purity only:

V = P. (6)

In the case where one pair’s signal and the other pair’s idler of are brought to interfere, the
distinctness term ‖ρA−ρB‖ does not necessarily cancel and the expression reads

V = P− ‖ρs−ρi‖2

2
, (7)

where we used the fact that for identical sources signal and idler carry the same purity, Ps =
Pi = P, as derived below.

So no matter whether the experiment relies on interference of two signal photons or mutual
interference of signal and idler, a high spectral purity P plays a key role in achieving high
HOM-visibilities.

3.1. Pure and mixed states

The density operator of any quantum state reads

ρ = ∑
j

p j |Ψ j〉〈Ψ j| (8)

with ∑ j p j = 1 and |Ψ j〉 are pure quantum states. The operator ρ represents a pure state when
there is only one non-vanishing p j such that ρ = |Ψ〉〈Ψ|, otherwise we speak of a mixed state.
The purity of a state ρ is evaluated by tracing over its square:

P = Tr(ρ2) = ∑
j

p2
j . (9)

In case of a bipartite quantum state ρAB we can trace over one subsystem in order to obtain the
quantum state of the respective other subsystem:

ρA = TrB ρAB, ρB = TrA ρAB. (10)

Any pure bipartite quantum state |Ψ〉AB can be expressed in terms of a shared complete set of
orthonormal basis states:

|Ψ〉AB = ∑
j

√
λ j |α j〉A⊗|β j〉B . (11)
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This expression is known as the Schmidt decomposition of the state |Ψ〉AB. The vectors |α j〉A
and |β j〉B are the so-called Schmidt modes of the respective subsystems and λ j are the Schmidt
coefficients which add up to one: ∑ j λ j = 1. The pairs |α j〉A⊗ |β j〉B form a complete set of
basis states of the total system. The Schmidt decomposition provides an intuitive measurement
of entanglement within a pure state: If the state is entangled, then there is more than just one
term present in Eq. (11).

When we build the density operator ρ = |Ψ〉〈Ψ| of the state (11) and perform a partial trace
over the subsystem B we arrive after straightforward calculation at

TrB ρAB = ∑
l
〈βl |ρAB |βl〉

= ∑
l
〈βl |

(
∑

j
∑
k

√
λ jλk |α j〉〈αk|⊗ |β j〉〈βk|

)
|βl〉

= ∑
l

∑
j
∑
k

√
λ jλk |α j〉〈αk|⊗ 〈βl |β j〉〈βk|βl〉

= ∑
l

∑
j
∑
k

√
λ jλk |α j〉〈αk|⊗δ

l j
δ

kl

= ∑
j

λ j |α j〉〈α j|= ρA. (12)

Comparing the above expression with Eq. (8) and (9) we find that the purity of the two subsys-
tems is determined by their mutual Schmidt coefficients:

PA = PB = Tr(ρ2
A) = Tr(ρ2

B) = ∑
j

λ
2
j . (13)

As we can see, the purity of the single photon states is, little surprising, proportional to the
inverse degree of entanglement of the total state. In the case of a separable bipartite state

|Ψ〉= |α〉⊗ |β 〉 (14)

there is only one non-vanishing Schmidt coefficient λ = 1 yielding maximum purity in both
subsystems: PA = PB = 1.

3.2. Factorability of the SPDC amplitude

When we summarise pump and phase-matching envelope amplitude into a single function, the
joint spectral amplitude (JSA)

f (ωs,ωi) = µ(ωs +ωi)ψ(ωs,ωi), (15)

we can rewrite the amplitude for SPDC as

|Ψ〉= N
∫

∞

0

∫
∞

0
f (ωs,ωi)a†

s a†
i dωs dωi |0〉 . (16)

The signal and idler quantum states are pure if the SPDC amplitude is separable, i.e. if it can
be represented as

|Ψ〉= N
∫

∞

0
fs(ωs)a†

s dωs

∫
∞

0
fi(ωi)a

†
i dωi |0〉 . (17)

However, the correlations of ωs and ωi in the joint spectral amplitude f (ωs,ωi) do indicate a
frequency entanglement of signal and idler photons. In order to investigate the entanglement
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of the SPDC-amplitude |Ψ〉—a pure bipartite state—we would like to express it in terms of a
Schmidt decomposition:

|Ψ〉= ∑
j

√
λ j |s j〉⊗ |i j〉 , (18)

with Schmitdt modes |s j〉 and |i j〉, representing the respective subsystems, signal and idler. We
perform the Schmidt decomposition numerically by making a singular value decomposition
(SVD) of the discretised JSA. For this purpose we first split the relevant range of signal and
idler frequencies into discrete values ωs,m and ωi,n. Then we express the state as a sum over
all possible combinations of signal and idler eigenfunctions, |s̃m〉 and |ĩn〉, weighted by their
respective joint amplitude f (ωs,m,ωi,n) each of which is calculated numerically:

|Ψ〉= ∑
m

∑
n

f (ωs,m,ωi,n) |s̃m〉⊗ |ĩn〉 . (19)

The amplitudes f (ωs,m,ωi,n) can be understood as components of an M×N-matrix F , each
row (column) of which represents a particular discretised signal (idler) frequency:

f (ωs,m,ωi,n) = 〈s̃m|F |ĩn〉= 〈ĩn|F †|s̃m〉 . (20)

FF † is the partial trace of the total state over the idler subsystem [4] which is in turn just the
definition of the reduced density operator of the signal subsystem:

FF † = ∑
n
〈in|ρ|in〉= ρs. (21a)

Analogously F †F represents just the opposite:

F †F = ∑
m
〈sm|ρ|sm〉= ρi. (21b)

We now express the respective amplitudes f (ωs,m,ωi,n) in Eq. (19) as components of F and
obtain

|Ψ〉= ∑
m

∑
n

F mn |s̃m〉⊗ |ĩn〉 . (22)

The SVD allows us to decompose any matrix into two unitary matrices U and V † and a diagonal
matrix D, such that

F =UDV †, (23)

where the columns of U represent the eigenvectors of FF † = ρs and the columns of V (or
rows of V †) are the eigenvectors of F †F = ρi. The entries in D are real, positive, appear in
descending order on the diagonal and represent the eigenvalues of the eigenvectors described
by the columns of U and V :

FF †Um j = d jUm j, (24a)

F †FV n j = d jV n j = d j
(
V †) jn

, (24b)
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where d j =D j j are just the coefficients of the diagonal matrix. It is important to note that the jth

column of U and the jth row of V † are associated with the same eigenvalue d j, i.e. the columns
of U and V have a shared spectrum. We now replace F by its SVD representation, so Eq. (22)
becomes

|Ψ〉= ∑
m

∑
n

(
UDV †)mn |s̃m〉⊗ |ĩn〉

= ∑
j
∑
m

∑
n

Um jD j j (V †) jn |s̃m〉⊗ |ĩn〉

= ∑
j

d j

(
∑
m

Um j |s̃m〉
)
⊗
(

∑
n

(
V †) jn |ĩn〉

)
. (25)

So we expressed the state |Ψ〉 in terms of a complete set of basis states, each weighted by a
coefficient d j. As long as the squares of the coefficients sum up to one, this is just the unique
expression for the Schmidt decomposition of |Ψ〉. So after D has been normalised such that√

Tr(D2) = 1 we can identify its entries with the Schmidt coefficients: d j =
√

λ j. Furthermore
we define

|s j〉= ∑
m

Um j |s̃m〉 , (26a)

|i j〉= ∑
n

(
V †) jn |ĩn〉 , (26b)

yielding the desired expression (18). The purity of ρs and ρi can then be easily obtained by
Eq. (9), only using the entries d j of the diagonal matrix D.

Experimentally, a separable JSA can be achieved by appropriate matching of the pulse dura-
tion and the crystal length. Fig. 2(a) depicts the joint spectral intensity | f (ωs,ωi)|2 (JSI) in the
case of a narrow-band CW laser impinging a short crystal, resulting in anti-correlated signal
and idler spectra. Conversely, a broadband femtosecond laser impinging a long crystal would
result in correlated daughter photons as shown in Fig. 2(b). When pulse duration and crystal
length are mutually matched, we can achieve frequency-uncorrelated signal and idler spectra as
illustrated in Fig. 2(c) and Fig. 2(d).
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Fig. 2. Graphical representation of the joint spectral intensity in four different configura-
tions. In the case of coinciding centre wavelengths (λs = λi) Figs. (a), (b) and (d) each
represent spectrally indistinguishable signal and idler radiation. However, Figs. (a) and (b)
depict cases where signal and idler wavelengths are highly (anti-) correlated, resulting in a
purity of P ∼ 0.1. The plots on the bottom each illustrate a frequency-uncorrelated down-
conversion (P ∼ 1), where signal and idler carry (c) different and (d) same bandwidth re-
spectively (as indicated by the white curves).

4. Numerical evaluation

Unfortunately, the generation of intrinsically pure quantum states is only possible for a lim-
ited amount of setups; as pointed out above, the JSA depends on the mutual relation of pump
envelope intensity and phase-matching envelope intensity. The latter depends ultimately on
the material’s Sellmeier equations which provide the refractive index for a given polarisation,
wavelength and temperature. As it turns out, each crystal allows for generation of intrinsically
pure down-converted photons only in the case of very specific polarisation- and wavelength
configurations.

Using numerical calculations we investigated the suitability of three periodically poled non-
linear crystals, potassium titanyl phosphate (KTP), lithium niobate (LN) and lithium tanta-
late (LT), for all kinds of down-conversion processes which carry a non-vanishing effective
non-linearity (Table 1). (All calculations were performed using our own Matlab-based pro-
gram QPMoptics which is available from the authors.) This systematic and extensive search
for setups which allow for generation of intrinsically pure quantum states is—to our knowl-
edge—unprecedented so far. This way we were able not only to confirm the choice of specific
crystals in recent experiments but also to find other promising (type 0, I and II) setups that
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were previously unknown and will be presented in the succeeding subsections. (For the sake
of a concise presentation we here omit the discussion of configurations with very low effective
non-linearity, namely o−→ o+o, e−→ o+o and o−→ o+e in LT. Moreover, our calculations
revealed that there are no opportunities for designing a setup with intrinsically pure daughter
states exploiting type I SPDC in ppKTP. Therefore this setup will neither be discussed any
further in this paper.)

Table 1. Effective non-linearity coefficients for all polarisation configurations and three
kinds of periodically poled crystals. In all cases a collinear propagation along the crystal’s
x-axis is assumed. The letter o denotes polarisation along the ordinary (the y-) axis while e
denotes polarisation along the extraordinary (the z-) axis. Note that all numerical values in
the table are to be understood as approximation since they vary slightly with the involved
wavelengths and the material’s doping. The values are taken from the software SNLO v63,
developed by AS-Photonics, LLC [13].

SPDC Type Effective Non-Linear Coefficient |deff|
[
pmV−1

]
ppKTP ppLN ppLT

0 o−→ o+o 0 d22 ∼ 1.5 d22 ∼ 0.9

e−→ e+ e d33 ∼ 9.4 d33 ∼ 14.5 d33 ∼ 7.6

I o−→ e+ e 0 0 0

e−→ o+o d24 ∼ 2.4 d31 ∼ 2.8 d31 ∼ 0.3

II o−→ o+ e d32 ∼ 2.4 d31 ∼ 2.8 d31 ∼ 0.3

e−→ o+ e 0 0 0

4.1. Parallel polarisation

In order to generate photon pairs with same polarisation, down-conversions of type 0 and type I
can be used. Type 0 SPDC with polarisations e −→ e+ e gives access to the effective non-
linearity coefficient deff = d33 which carries by far the highest value in all three crystals. Setups
which allow for intrinsically pure type 0 SPDC are depicted in Fig. 3. As the plots show, these
setups generate photons with signal or/and idler in the mid-infrared regime and are therefore
of little relevance due to poor detection efficiencies. However, type I down-conversion (e −→
o+ o) in ppLN, depicted in Fig. 4, does offer configurations of low spectral correlation with
wavelengths which are more accessible for today’s detectors.

The plots in Figs. 3 and 4 depict wavelength configurations which are promising regarding
spectrally uncorrelated daughter states. Note however that, as an additional requirement for
high purity, the laser’s bandwidth and the crystal length have to be matched to each other. The
dependence of purity on these parameters varies with the involved wavelengths and has to be
evaluated for each individual setup. As an example, Fig. 5 illustrates the function P(τ,L) for
the type I down-conversion 750nm−→ 1200nm+2000nm in ppLN.
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(a) ppKTP, e−→ e+ e, deff ∼ 9.4pmV−1

(b) ppLN, e−→ e+ e, deff ∼ 14.5pmV−1

(c) ppLT, e−→ e+ e, deff ∼ 7.6pmV−1

Fig. 3. Signal wavelength versus pump wavelength λp (left) and crystal periodicity Λ (right)
for type 0 SPDC in (a) ppKTP, (b) ppLN and (c) ppLT. All plots exclusively display con-
figurations which allow for an uncorrelated joint spectral intensity. Each coloured line cor-
responds to a certain pump wavelength λp and depicts the range of signal wavelength over
which an intrinsic purity of more than 0.99 can be achieved by mutual matching of pump
spectrum and crystal length. Note that all depicted data corresponds to a crystal temperature
of 50 ◦C and is slightly modified with varying temperature.
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Fig. 4. Setups for intrinsically pure state generation in ppLN, SPDC type I e −→ o+ o
and effective non-linearity deff = d31 ∼ 2.8pmV−1. The down-conversion 750nm −→
1200nm+2000nm is closer investigated in Fig. 5 as an exemplary illustration of how pulse
duration and crystal length have to be mutually matched for high purity.

Fig. 5. Illustration of the spectral purity P with respect to pulse duration τ and crystal length
L in the case of a type I down-conversion from 750nm to 1200nm and 2000nm in ppLN.
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4.2. Orthogonal polarisation

Figure 6 depicts configurations of type II SPDC in ppKTP and ppLN which allow for gen-
eration of spectrally uncorrelated daughter photons. It turns out however that for periodically
poled lithium niobate the generated photons carry wavelengths which are—in the single pho-
ton regime—almost impossible to detect with satisfying efficiency. As seen in the right plot
in Fig. 6(a) the required poling periodicity of KTP crystals approaches infinity for a specific
set of wavelength configurations. This feature opens opportunities for phase matched and in-
trinsically uncorrelated spectra without periodic poling of the crystal. The advantages of this
property range from cost savings to higher SPDC efficiencies since the effective non-linear co-
efficient deff = d24 in bulk KTP goes up as high as to 3.9 pmV−1 [14] compared to 2.3 pmV−1

in ppKTP. A depiction of all possible pump- and signal wavelength configurations which do not
require periodic poling can be found in Fig. 7. Unfortunately, as the plot indicates, the gener-
ated wavelengths lie in areas which are difficult to detect with common avalanche photodiodes
(λs = 1000–2200nm, λi = 1800–3200nm). Future developments and upcoming detection tech-
nologies, i.e. superconducting nanowire detectors, might soon make them more accessible.

Photon pairs which carry the same centre wavelength but orthogonal polarisation find many
applications in quantum-based experiments. We therefore subjected the crystals to an in-depth
investigation to find out about their properties in frequency-degenerate type II down-conversion
(λs = λi = 2×λp, o−→ o+ e). As illustrated by the grey lines in Fig. 6, both crystals, ppKTP
and ppLN, offer many opportunities for the case of frequency-degenerate pure quantum states.
However, in order to achieve maximum spectral indistinguishability of signal and idler, the
daughter fields should not only carry the same centre wavelength but also the same bandwidth.
Fig. 8 shows a plot of configurations with phase-matched and pure output states in ppKTP for
which λs = λi = 2×λp. The plot illustrates that signal and idler states are—although pure—in
general spectrally distinguishable due to their different bandwidths (compare Fig. 2(c)) which
undermines visibilities in interference experiments. However, in the telecom regime (located
in the neighbourhood of λp = 770–800nm) the output spectra turn out to coincide sufficiently
for most applications which justifies the choices that were made in recent experiments [5–12].
Maximal spectral indistinguishability can be achieved at the down-conversion 791nm−→ 2×
1582nm. In the case of frequency-degenerate SPDC in ppLN we found the point of coinciding
wavelengths and bandwidths to lie at 1755nm −→ 2× 3510nm. These wavelengths can be
regarded as material constants of the respective non-linear materials.

Given a configuration of wavelengths, polarisations and crystal that in principle allow for
generation of intrinsically uncorrelated daughter fields, the pulse duration τ and crystal length
L have to be mutually matched to achieve high purity in the laboratory. Fig. 9 depicts how the
purity behaves with respect to τ and L in two different examples, 791nm −→ 2× 1582nm in
ppKTP and 650nm−→ 1011nm+1820.36nm in bulk KTP.
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(a) ppKTP, o−→ o+ e, deff = d32 ∼ 2.4pmV−1

(b) ppLN, o−→ o+ e, deff = d31 ∼ 2.8pmV−1

Fig. 6. Signal wavelength versus pump wavelength λp (left) and crystal periodicity Λ (right)
for type II SPDC in (a) ppKTP and (b) ppLN at T = 50◦C. Again, only setups which allow
for intrinsically pure signal and idler states are displayed. The gray line in the left plots
represents spectrally symmetric down-conversions. For ppKTP there is a range of pump and
signal wavelengths for which the periodicity approaches infinity (as indicated schematically
by the convergent lines after the axis break). This property enables spectrally pure output
generation without periodic poling (displayed in Fig. 7). Moreover, Fig. (a) illustrates that
ppKTP allows for pure degenerate output states with signal and idler in the telecom band.
Fig. (b) indicates that ppLN allows for a priori uncorrelated spectra only with signal and
idler in the mid-infrared regime.

#253363 Received 5 Nov 2015; revised 18 Dec 2015; accepted 5 Jan 2016; published 2 Feb 2016 
© 2016 OSA 8 Feb 2016 | Vol. 24, No. 3 | DOI:10.1364/OE.24.002712 | OPTICS EXPRESS 2724 



Fig. 7. Illustration of setups for type II SPDC (o−→ o+ e) which allow for phase-matched
and intrinsically pure states in bulk—not periodically poled—KTP (deff ∼ 3.9pmV−1 [14]).
The JSI of three setups is depicted via insets as examples. The down-conversion 650nm−→
1011nm+1820.36nm is closer investigated in Fig. 9(b).

Fig. 8. Pure quantum-state generation by frequency-degenerate type II SPDC ppKTP. The
black curve depicts the Hong-Ou-Mandel visibility between signal and idler of one source.
The red curves illustrate how signal and idler bandwidths change relatively to each other
with respect to λp (here in arbitrary units since the numeral values of ∆λs/i depend on the
respective pulse- and crystal lengths). Although pure states can be generated within the
full plotted range, signal and idler are fully spectrally indistinguishable only at the down-
conversion 791nm−→ 2×1582nm, as indicated by the intersection of the red curves.
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(a) ppKTP, 791nm−→ 2×1582nm,
ppLN, 1755nm−→ 2×3510nm

(b) KTP, 650nm−→ 1011nm+1820.36nm

Fig. 9. Tailoring spectrally uncorrelated output states by mutual matching of pulse du-
ration τ and crystal length L. The graphs illustrate three examples of type II SPDC:
Fig. (a) represents frequency-degenerate SPDC with 791 nm pump in ppKTP (similar plot
for 1755 nm pump in ppLN); Fig. (b) represents type II down-conversion 650nm −→
1011nm+ 1820.36nm in bulk KTP. Note from the insets how the output spectra get nar-
rower with increasing crystal- and pulse length.
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5. Conclusion

We discussed, analytically and numerically, the generation of photon pairs with high spec-
tral purity, circumventing the need for bandpass filtering. We presented a broad variety of
SPDC setups that allow for intrinsically pure quantum states most of which were unknown
so far. We could confirm the well known property of ppKTP with Λ ∼ 46µm to generate un-
correlated daughter photons with SPDC in the vicinity of 780nm −→ 2× 1560nm with the
maximal spectral indistinguishability being located at 791nm −→ 2× 1582nm. For type II
SPDC in ppLN we found the point of maximum spectral purity and indistinguishability to lie at
1755nm−→ 2×3510nm. Moreover, we presented a variety of novel configurations with high
intrinsic purity. Among others we discussed how KTP allows for generation of phase-matched
and pure daughter fields without periodic poling, which gives rise to significant advantages
such as cost savings and higher count rates.
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