

RC-LED-650-02

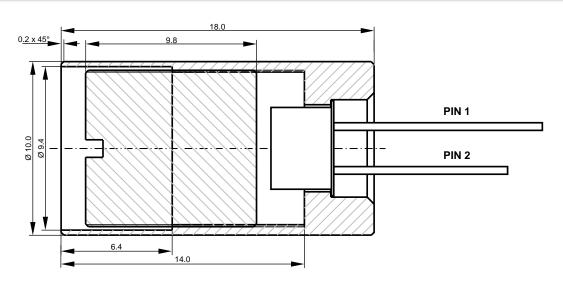
- Resonant Cavity LED Module
- 650 nm, 0.2 mW
- No Threshold
- Focusable Glass Lens

Description

v 1.2 04.11.2014

RC-LED-650-02 is a Resonant Cavity LED module emitting at 660 nm with rated output power of about 185 μ W. The module's body is made of black anodized aluminium, enclosing RC-LED and an adjustable 3-glass collimator lens.

Maximum Ratings

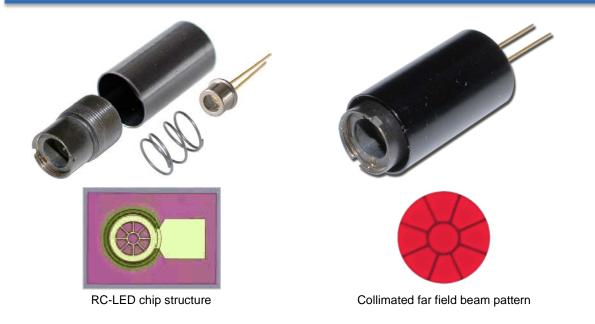

Devenueter	Cumbal	Va	l lm:t		
Parameter	Symbol	Min.	Max.	Unit	
Forward Current	I _F		30	mA	
Reverse Voltage	V_R		5	V	
Reverse Current	I _R		10	μA	
Operating Temperature	T_{CASE}	- 20	+ 75	°C	
Storage Temperature	$T_{\rm STG}$	- 40	+ 100	°C	
Soldering Temperature	T_{SOLD}		260	°C	

Specifications (T_{CASE}=25°C)

Deservator	Symbol	Values			11-14
Parameter		Min.	Тур.	Max.	Unit
Peak Wavelength	λ_P	640	650	660	nm
Optical Power	Po	170	185	200	μW
Spectral Width	$\Delta\lambda$		7		nm
Output Aperture			Ø5		mm
Beam Character		Round			
Forward Current	I_F		20		mA
Forward Voltage	V _F		2.0	2.2	V
Rise Time (10 - 90%)	t _R		3		ns
Fall Time (10 - 90%)	t _F		3		ns
Wavelength Shift	$\Delta\lambda/\Delta T$		0.07		nm/°C
Power Drift	$\Delta P_{0} / \Delta T$		-0.6		%/°C
Focus		adjustable			
Lens Type		3-glass lens, AR coated			
Material Body		Aluminium, black anodized			
Dimensions		Ø10 x 18			mm
PIN Leads		Ø0.25 x 13.5 and ~10 (short pin)			mm

Drawing

All dimensions units are mm

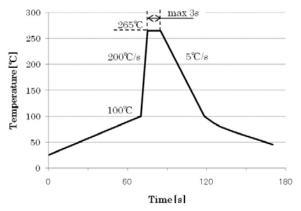

Electrical Connection

Lead	Description	
PIN 1	Anode	
PIN 2	Cathode	

Additional Information

Precaution for Use

1. Cautions


DO NOT look directly into the emitted light or look through the optical system. To prevent in adequate exposure of the radiation, wear protective glasses.

2. Lead Forming

- When forming leads, the leads should be bent at a point at least 3 mm from the base of the lead. DO NOT use the base of the lead frame as a fulcrum during lead forming.
- Lead forming should be done before soldering.
- DO NOT apply any bending stress to the base of the lead. The stress to the base may damage the LED's characteristics or it may break the LEDs.
- When mounted the LEDs onto the printed circuit board, the holes on the circuit board should be exactly aligned with the leads of LEDs. If the LEDs are mounted with stress at the leads, it causes deterioration of the lead and it will degrade the LEDs.

3. Soldering Conditions

- Solder the LEDs no closer than 3 mm from the base of the lead.
- DO NOT apply any stress to the lead particularly when heat.
- The LEDs must not be reposition after soldering.
- After soldering the LEDs, the lead should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- Cut the LED leads at room temperature. Cutting the leads at high temperature may cause the failure of the LEDs.

4. Static Electricity

- The LEDs are very sensitive to Static Electricity and surge voltage. So it is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
- All devices, equipment and machinery must be grounded properly. It is recommended that precautions should be taken against surge voltage to the equipment that mounts the LEDs.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice