SMC660N

- RED SMD LED
- 660 nm, 11 mW
- 3020 Ceramic SMD package
- Beam Angle: ± 61°

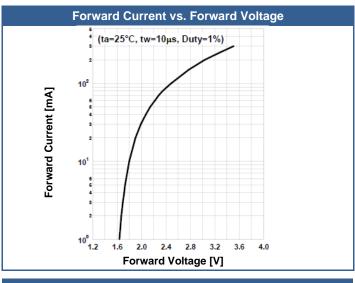
Description

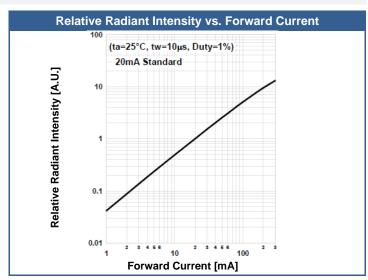
SMC660N is a red surface mount LED, utilizing a AlGaInP based chip with a typical peak wavelength of 660 nm and optical output power of 11 mW @ 20 mA. **SMC660N** comes in 3020 ceramic SMD package with flat epoxy resin mold.

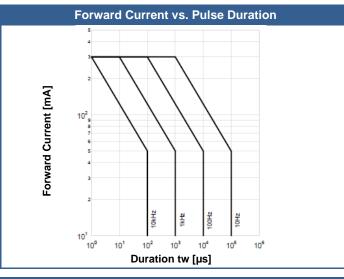
Maximum Ratings*

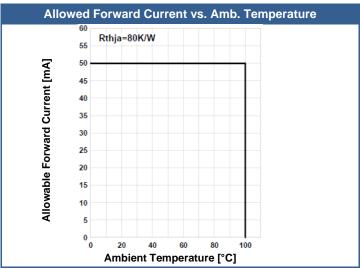
Parameter	Symbol	Valu	Unit		
Farameter	Syllibol	Min.	Max.	Onit	
Power Dissipation	PD		120	mW	
Forward Current	lF		50	mA	
Pulse Forward Current **	IFP		300	mA	
Reverse Voltage (I _R = 10 μA)	UR		5	V	
Thermal Resistance	RTHJA		80	K/W	
Junction Temperature	TJ		120	°C	
Operating Temperature	TCASE	- 40	+ 100	°C	
Storage Temperature	Tstg	- 40	+ 100	°C	
Lead Solder Temperature (t _{max} . 5s)	T _{SLD}		+ 250	°C	

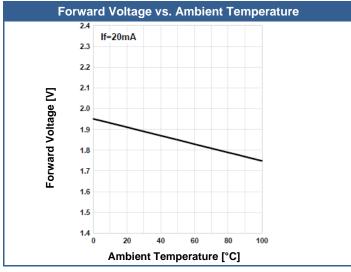
^{*} Operating close to or exceeding these parameters may damage the device, ** duty cycle = 1 %, pulse width = 10 µs

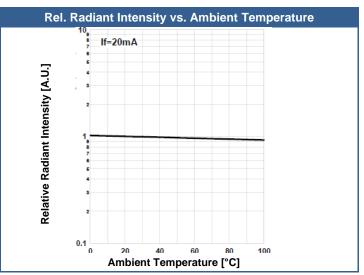

Electro-Optical Characteristics (TCASE = 25°C)

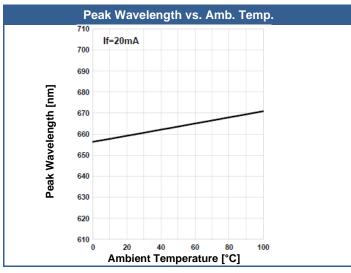

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λ_P	I _F =20 mA	650	660	670	nm
Dominant Wavelength	λ_P	I _F =20 mA		640		
Half Width	λ_{Δ}	I _F =20 mA		16		nm
Forward Voltage	UF	I _F =20 mA		1.9	2.3	V
	UFP	I _{FP} =300 mA		3.5		
Total Radiated Power	Po	I _F =20 mA		11		mW
		I _{FP} =300 mA		140		
Radiant Intensity	lE	I _F =20 mA		3.4		
		I _{FP} =300 mA		44		mW/sr
Beam Angle	2θ _{1/2}	I _F =20 mA		122		deg.
Rise Time	t_r	I _F =20 mA		10		ns
Fall Time	t_f	I _F =20 mA		10		ns

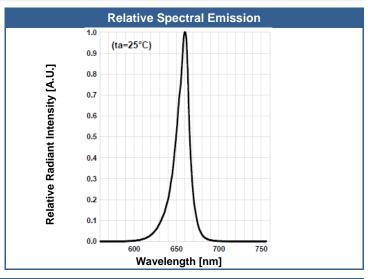

 $^{^{*}}$ duty cycle = 1 %, pulse width = 10 μs

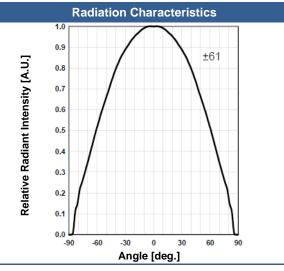


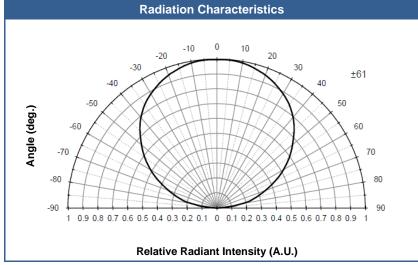

Typical Performance Curves



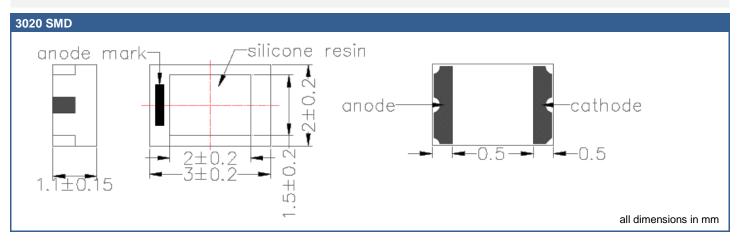


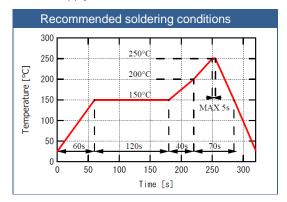






Typical Performance Curves




Outline Dimensions

General Notes

Soldering

- · Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- . Do not apply current to the LED until it has cooled down to room temperature after soldering

Cleaning

- · Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended
- DO NOT USE acetone, chloroseen, trichloroethylene, or MKS
- DO NOT USE ultrasonic cleaners.

Static Electricity

- · LEDs are sensitive to electrostatic discharge (ESD).
- Precautions against ESD must be taken when handling or operating these LEDs
- Surge voltage or electrostatic discharge can result in complete failure of the LED.

Radiation

- During operation these LEDs do emit light, which could be hazardous to skin and eyes, and may cause cancer.
- Do avoid exposure to the emitted light. Protective glasses if needed
- It is further advised to attach a warning label on products/systems.

Operation

- Do only operate LEDs with a current source.
- Running these LEDs from a voltage source will result in complete failure of the device.
- Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Storage

- The maximum shelf life of LEDs in the originally sealed aluminum bag is 12 months.
- Before opening the aluminum bag, please store it at <30 °C, <60 % RH.
- After opening the aluminum bag, please solder the LEDs within 72 hours (floor life) at 5 − 30 °C, <50 % RH.
- Put any unused, remaining LEDs and silica gel back in the same aluminum bag and then vacuum-seal the bag.
- It is recommended to keep the re-sealed bag in a desiccator at <30%RH.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice