rev 1.1, 05.03.2018

SMC780

- Infrared LED
- 780 nm, 10 mW
- SMD package, Ceramic
- Dimension: 3.0 x 2.0 x 1.1 mm
- Viewing Angle: 110°

1

Description

SMC780 is a surface mount AlGaAs LED with a typical peak wavelength of **780 nm** and radiation of **10 mW**. It comes in SMD package (ceramic) and is sealed with silicone resin.

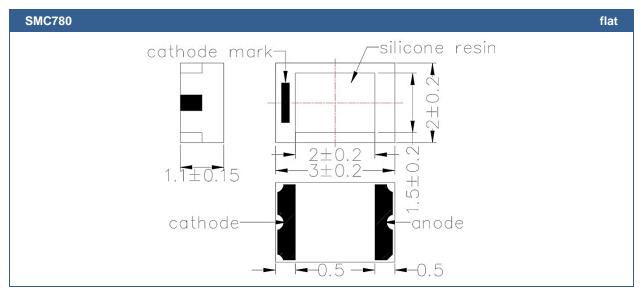
Maximum Ratings (TCASE=25°C)

Davamatar	Cumbal	Val	Herit		
Parameter	Symbol	Min.	Max.	Unit	
Power Dissipation	P_D		190	mW	
Forward Current	IF		100	mA	
Pulse Forward Current *1	I FP		500	mA	
Reverse Voltage	V _R		5	V	
Operating Temperature	T_{CASE}	- 30	+ 80	°C	
Storage Temperature	T _{STG}	- 40	+ 80	°C	
Lead Solder Temperature *2	T_{SLD}		+ 250	°C	

^{*1} duty=1%, pulse width = 10 μ s

Electro-Optical Characteristics (TCASE=25°C)

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λ_P	I _F =50mA	765	780	795	nm
Half Width	$\Delta \lambda$	I _F =50mA		35		nm
Forward Voltage	VF	I _F =50mA		1.75	1.95	V
Radiated Power *	Po	I _F =50mA	5.0	10.0		mW
Radiant Intensity *2	IE	I _F =50mA	2.0	5.0		mW/sr
Viewing Angle	φ	I _F =50mA		110		deg.
Rise Time	t r	I _F =50mA		80		ns
Fall Time	t f	I _F =50mA		80		ns


^{*} measured by Photodyne #500

www.roithner-laser.com

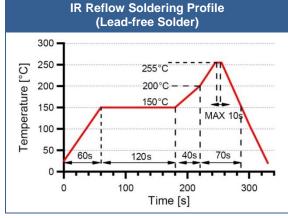
^{*2} must be completed within 3 seconds

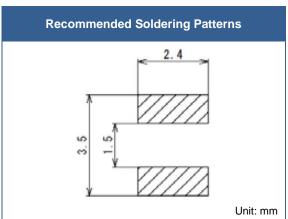
^{*2} measured by Tektronix J-6512

Outline Dimensions

All Dimensions in mm

Precautions


Soldering:


- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- · Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Recommended soldering conditions:

This LED is designed to be reflow soldered on to a PCB. If dip soldered or hand soldered, its reliability cannot be guarantee.

Nitrogen reflow soldering is recommended. Air flow soldering conditions can cause optical degradation, caused by heat and/or atmosphere.

Above table specifies the maximum allowed duration and temperature during soldering. It is strongly advised to perform soldering at the shortest time and lowest temperature possible.

www.roithner-laser.com 2

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended

DO NOT USE acetone, chloroseen, trichloroethylene, or MKS

DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

Those LEDs do emit **invisible light**, which is invisible and may cause cancer. Do avoid exposure to the emitted light. It is further advised to attach a warning label on products/systems.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice

www.roithner-laser.com 3