RLCU-440-400

• High Power UV LED

400 nm, 190-310 mW

Ceramic SMD, 3.8 x 3.8 x 1.0 mm

Viewing angle: 120°

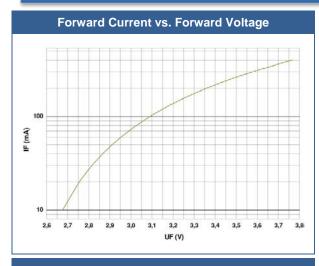
v 1.0 10.07.2014

1

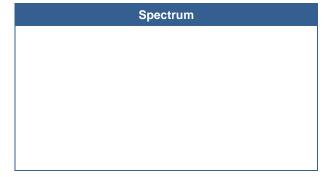
Description

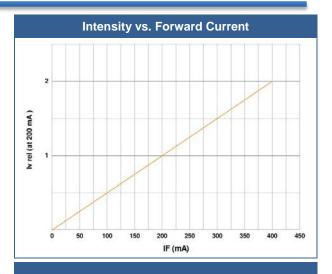
RLCU-440-400 is a surface mount infrared High Power LED with a typical peak wavelength of 400 nm and radiant intensity of typ. 190-310 mW. It comes in ceramic SMD package with silver plated soldering pads and is taped in 12 mm blister tape (face up, cathode to transporting perforation).

Maximum Ratings

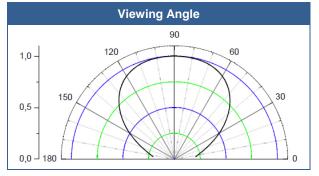

Parameter	Symbol	Val	I Imia	
		Min.	Max.	Unit
Forward Current	I _F		350	mA
Pulse Forward Current *1	I _{FP}		800	mA
Reverse Voltage	V_R		1	V
Reverse Current	I_R		20	mA
Thermal Resistance	R_{θ_JC}		10	K/W
Operating Temperature	T _{OP}	-40	85	°C
Storage Temperature	T _{STR}	-40	100	°C
Soldering Temperature *2	T _{SOL}		250	°C

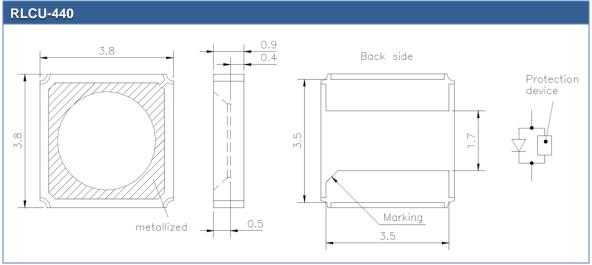
Electro-Optical Characteristics (T_{CASE} = 25°C, I_F = 350mA)

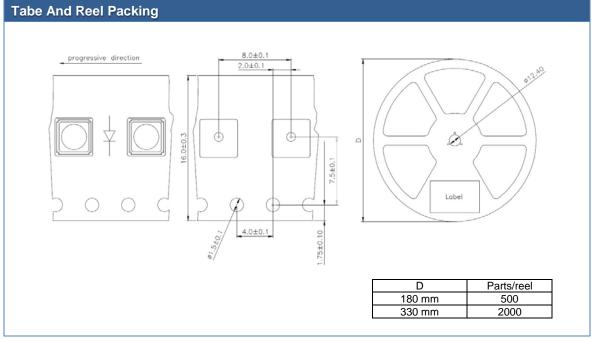

Parameter	Symbol	Values			Heit
		Min.	Тур.	Max.	Unit
Peak Wavelength	λ_{P}	400		405	nm
Half Width	$\Delta \lambda$				nm
Forward Voltage	V_{F}		3.6	4.5	V
Radiated Power	Po	190	310		mW
Radiant Intensity	I _E	70		110	mW/sr


^{*1 1:10,} pulse width = 100 µs *2 must be completed within 3 seconds

Typical Performance Curves

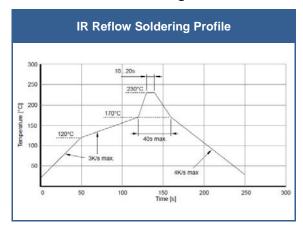


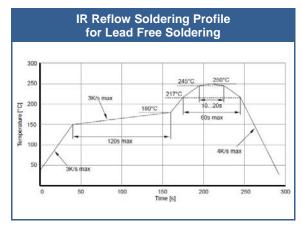



Forward Current vs. Shift Peak Wavelength

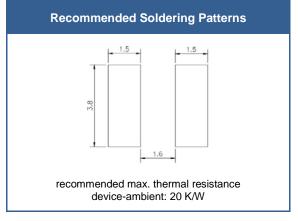
Outline Dimensions

All dimensions in mm, Tolerance: ±0.1 mm


All dimensions in mm


Precautions

Soldering:


- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- · Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux.
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Recommended soldering conditions:

Manuel Soldering				
soldering time	max. 3 s			
soldering temperature	max. 260 °C			
power of iron	max. 25 W			

Above table specifies the maximum allowed duration and temperature during soldering. It is strongly advised to perform soldering at the shortest time and lowest temperature possible.

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended

DO NOT USE acetone, chloroseen, trichloroethylene, or MKS

DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

During operation these LEDs do emit **high intensity UV light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems that do utilize UV-LEDs.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device.

Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice