

ROITHNER LASERTECHNIK GIRDH

MEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM

SMB1W-700-04

TECHNICAL DATA

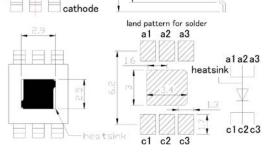
High Power LED, SMD

SMB1W-700-04 is a AlGaAs high power LED, mounted on a cooper heat sink with a 5x5 mm SMD package and molded with epoxy resin. On forward bias, it emits a radiation of typical 120 mW at a peak wavelength of 700 nm.

Specifications

• Structure: AlGaAs, 1W high power chip

Peak Wavelength: 700 nmOptical Output Power: 120 mW


Optical Output Power: 120 mw
 Package: SMD, PPA resin Lead frame die: silver plated on copper

Lens: epoxy resin

Absolute Maximum Ratings (T_A =25°C)

Item	Symbol	Value	Unit
Power Dissipation	P_{D}	1500	mW
Forward Current	I _F	500	mΑ
Pulse Forward Current *1	I _{FP}	2000	mΑ
Reverse Voltage	V_R	5	V
Thermal Resistance	R _{th}	10	K/W
Junction Temperature	Τ _J	120	ပ္
Operating Temperature	T_{opr}	-40 +100	ç
Storage Temperature	T _{stq}	-40 +100	°C
Soldering Temperature *2	T_{sol}	255	°C

(Unit: mm)

Electro-Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	V_{F}	$I_F = 500 \text{ mA}$	-	2.1	2.7	V
Pulsed Forward Voltage	V_{FP}	$I_{FP} = 2 A$	-	3.5	-	V
Total Radiated Power	Po	$I_F = 500 \text{ mA}$	60	120	-	mW
		$I_{FP} = 2 A$	ı	480	-	
Radiant Intensity	Ι _Ε	$I_F = 500 \text{ mA}$	ı	130	-	mW/sr
		$I_{FP} = 2 A$	ı	530	-	
Peak Wavelength	λ_{P}	$I_F = 500 \text{ mA}$	690	700	710	nm
Half Width	Δλ	$I_F = 500 \text{ mA}$	ı	21	-	nm
Viewing Half Angle	Θ _{1/2}	$I_F = 500 \text{ mA}$	ı	±24	-	deg.
Rise Time	t _r	$I_F = 500 \text{ mA}$	-	50	-	ns
Fall Time	t _f	$I_F = 500 \text{ mA}$	-	40	-	ns

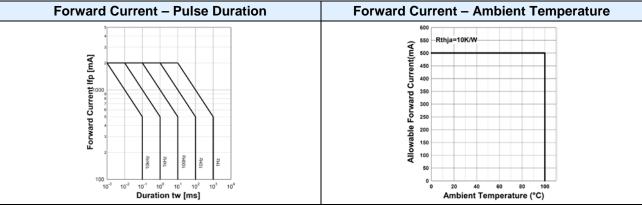
Radiated Power is measured by S3584-08

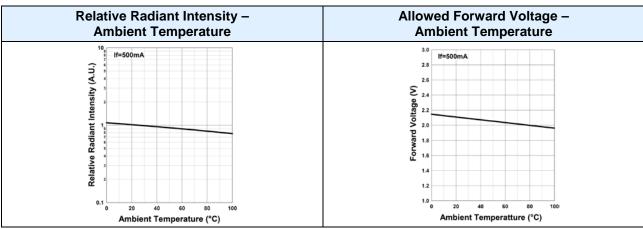
Radiant Intensity is measured by Tektronix J-6512

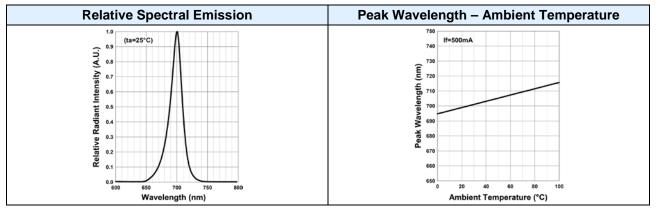
Note: The above specifications are for reference purpose only and subjected to change without prior notice.

 $^{^{*1}}$ duty = 1%, pulse width = 10 μ s

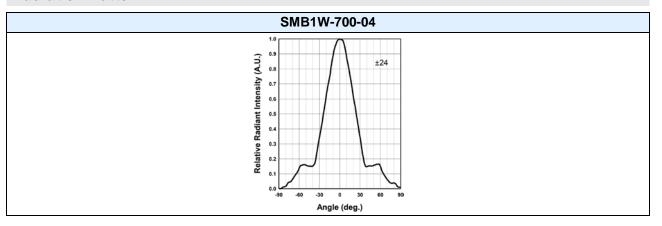
^{*2} must be completed within 3 seconds at 260°C


ROITHNER LASERTECHNIK GmbH


MIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM



Typical Performance Curves



ROITHNER LASERTECHNIK GIRDH

WIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM

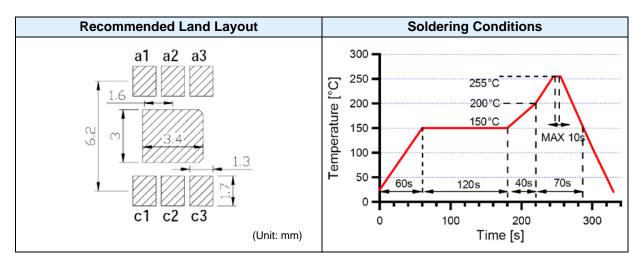
Radiation Pattern

ROITHNER LASERTECHNIK GIRBH

WIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44, OFFICE@ROITHNER-LASER.COM

Precaution for Use

1. Cautions


- This high power LED must be cooled!
- DO NOT look directly into the emitting area of the LED during operation!

2. Soldering Conditions

- DO NOT apply any stress to the lead particularly when heat.
- After soldering the LEDs should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.

3. Static Electricity

- The LEDs are very sensitive to Static Electricity and surge voltage. So it is recommended that a wrist band and/or an anti-electrostatic glove be used when handling the LEDs.
- All devices, equipment and machinery must be grounded properly.
 It is recommended that precautions should be taken against surge voltage to the equipment that mounts the LEDs.

4. Heat Generation

- Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in the specification.
- The operating current should be decided after considering the ambient maximum temperature of LEDs.

5. Storage

- The LEDs should be stored at 30°C or less and 60%RH or less after being shipped and the storage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored for a year in a sealed container with nitrogen atmosphere and moisture absorbent material at less than 30%RH.
- Please avoid rapid transitions in ambient temperature, especially in high humidity environments where condensation can occur.