VOLTCON 0-5

Transmitter of photocurrent to 0-5 V signal

GENERAL FEATURES

Properties of the VOLTCON

The VOLTCON converts a photocurrent into an output voltage between o and 5 V and can be connected to any PLC system.

Three models with different measurement ranges are available. The amplification factor (gain) can be adjusted by a potentiometer. The measurement range can also be customized by replacing passive components (see description on page 2).

SPECIFICATIONS

raidilletei	Vatue		
Photocurrent measurement range	VOLTCON_low	500 μΑ	available on request
	VOLTCON_med	5 μΑ	
	VOLTCON_high	100 nA	available on request

Value

Supply voltage 7*...24 V (*usable down to 5V, but this is not recommended)

Gain adjustment range ± 35%

Dark output voltage < 1 mV

Darameter

Dimensions 13 x 26 x 8 mm (WxLxH)

Operating temperature $-20 \dots +80 \, ^{\circ}\text{C}$ Storage temperature $-40 \dots +80 \, ^{\circ}\text{C}$

Standards RoHS 2 2011/65/EU, DIN IEC 60381-2

We strongly recommend to process this product on ESD protected workplaces.

CONNECTION

- 1 Photodiode anode
- 2 Photodiode cathode
- 3 Signal output (connect to current input)
- 4 GND power supply
- 5 V+ power supply

Gain - turn left to increase the gain

www.roithner-laser.com 1

CUSTOMIZATION OF MEASUREMENT RANGE

To modify the measurement range beyond the available adjustment range the feedback resistor R_f must be replaced. The adjustment range remains unaffected by this change. I_{max} is the designated maximum photocurrent to be measured.

$$R_{f,new}$$
 (in M Ω) = 5 / I_{max} (in μ A)

The capacitor C_f defines the time constant τ of the measurement and may need modification too. By default τ is 10 ms for all models. The required value of C_f can be calculated from $R_{f,new}$ and the intended time constant:

$$C_f(in nF) = \tau_{new}(in ms) / R_{f,new}(in M\Omega)$$

Recommended values:

10 k Ω <= R_{f,new} <= 3 G Ω and 1 ms <= τ <= 200 ms, C_{f,new} >= 33 pF, components package size o805 (2.0 x 1.25 mm)

Default component values:

Model	\mathbf{R}_{f}	C,
VOLTCON_low	10 kΩ	1 μF
VOLTCON_med	1 ΜΩ	10 nF
VOLTCON_high	100 ΜΩ	100 pF

www.roithner-laser.com 2